Search results for "memetic algorithms"
showing 7 items of 7 documents
Multilayer perceptron training with multiobjective memetic optimization
2016
Machine learning tasks usually come with several mutually conflicting objectives. One example is the simplicity of the learning device contrasted with the accuracy of its performance after learning. Another common example is the trade-off that must often be made between the rate of false positive and false negative predictions in diagnostic applications. For computer programs that learn from data, these objectives are formulated as mathematical functions, each of which describes one facet of the desired learning outcome. Even functions that intend to optimize the same facet may behave in a subtly different and mutually conflicting way, depending on the task and the dataset being examined. Mul…
An adaptive multimeme algorithm for designing HIV multidrug therapies.
2007
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework. These local searchers, having different features according to the exploration logic and the pivot rule, have the role of exploring the decision space from different and complementary perspectives and, thus, assisting the standard evolutionary operators in the optimizati…
Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration
2012
Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…
Discrete Tomography Reconstruction Through a New Memetic Algorithm
2008
Discrete tomography is a particular case of computerized tomography that deals with the reconstruction of objects made of just one homogeneous material, where it is sometimes possible to reduce the number of projections to no more than four. Most methods for standard computerized tomography cannot be applied in the former case and ad hoc techniques must be developed to handle so few projections.
Simple memetic computing structures for global optimization
2014
The mixed capacitated general routing problem with turn penalties
2011
In this paper we deal with the mixed capacitated general routing problem with turn penalties. This problem generalizes many important arc and node routing problems, and it takes into account turn penalties and forbidden turns, which are crucial in many real-life applications, such as mail delivery, waste collection and street maintenance operations. Through a polynomial transformation of the considered problem into a Generalized Vehicle routing problem, we suggest a new approach for solving this new problem by transforming it into an Asymmetric Capacitated Vehicle routing problem. In this way, we can solve the new problem both optimally and heuristically using existing algorithms. A powerfu…
An enhanced memetic differential evolution in filter design for defect detection in paper production.
2008
This article proposes an Enhanced Memetic Differential Evolution (EMDE) for designing digital filters which aim at detecting defects of the paper produced during an industrial process. Defect detection is handled by means of two Gabor filters and their design is performed by the EMDE. The EMDE is a novel adaptive evolutionary algorithm which combines the powerful explorative features of Differential Evolution with the exploitative features of three local search algorithms employing different pivot rules and neighborhood generating functions. These local search algorithms are the Hooke Jeeves Algorithm, a Stochastic Local Search, and Simulated Annealing. The local search algorithms are adap…